Whakarewarewa School

KIA U KI TE PAI

Maths Progressions - Number and algebra

This document was created by Whakarewarewa School staff using the NZC, Maths Standards and Numeracy Framework. It is indicative of the maths knowledge and strategies required to meet the curriculum expectations at different year levels. A differentiated programme will be needed to ensure all students are scaffolded to progress in their learning. The learning intentions listed in this document are not in linear order and are not intended to be used as such. The needs of the learners, as identified through formal and informal data gathering, drives learning at all times at Whakarewarewa School. The maths progressions for geometry, measurement and statistics should be used in conjunction with these progressions.

At Whakarewarewa School maths programmes are characterised by the following:

- A problem solving approach, rather than a 'number crunching' one
- Differentiated practices, based on needs, as ascertained by current and reliable data
- Integration of the various strands of maths as much as possible and integration of the numeracy domains
- Integration of maths in other subjects and in real life settings
- Teachers and students using the correct vocabulary as set out in this document to ensure students experience the same language of learning from class to class
- The development of assessment capable learners who understand and can articulate the following:
- Where am I going? What are my goals?
- How am I going? What progress is being made towards the goal?
- Where to next? What activities need to be undertaken next to ensure progress?
- Effective pedagogy in mathematics - The International Academy of Education's research on improving student achievement in mathematics, based on Best Evidence Synthesis is used to inform classroom practice. This short guide with questions to consider when reflecting on classroom practice may be helpful.
- A strategic approach is used for teaching 'mathematical behaviours' as set out in this document. Learning intentions for mathematical behaviours must be a part of each lesson.

How to use this document:

- These progressions are not a checklist to be worked through. They can form the basis of the maths programme and should be used to inform planning. Students may be working at multiple stages in different areas of their learning.
- Data analysis, identifying of goals and any other planning will start with the maths progressions but other resources can also be drawn on.
- Progressions can be used to plan and teach a specific group and sometimes for 'clinics' i.e. students across the class with the same identified learning need.
- Share the progressions with students (age appropriate), so they know where they at, where they are going and what their next learning step is.
- All lessons must include learning intentions from the 'mathematical behaviours' section. These should be specifically planned for, taught and monitored.

Stage $0 \quad$ Emergent Early level 1
During these school years, number should be the focus of $60-80 \%$ of mathematics teaching time.

Maths Progressions - Number and algebra

I am learning to... Mathematical Behaviours (what mathematicians do)	
Explain my mathematical thinking	Explain others' strategies by repeating or re-voicing what they have said
Use the most efficient strategy to solve a problem e.g. I know that counting on from the largest number is more efficient than counting from 1.	Agree or disagree with someone else's strategy or answer, and explain why I think this
Listen actively	Say what I am good at in maths and what I need to work on
Identify maths in the world around me	Use mathematical vocabulary
Pose problems and conduct mathematical investigations	
I am learning to... Knowledge	
Number Identification, Sequencing and Ordering	
Read numbers to 5 first and then to 10	$\begin{aligned} & 0,1,2,3,4,5 \\ & 6,7,8,9,10 \end{aligned}$
Count forwards to 5 first and then to 10	0, 1, 2, 3, 4, 5... 10
Count backwards from 5 first and then from 10	$5,4,3,2,1,0$
Say the number after a number (in the range 1-5)	${ }_{3,4,}$
Say the number before a number (in the range 1-5)	
Order numbers to 5 first and then to 10	53124
Strategy I am learning to...	
Count a set of objects up to 5 first and then to 10 by one-toone matching	123 3 ladybirds

Maths Progressions - Number and algebra

Form a set of objects up to 5 first and then to 10 by one-to-one	Get 2 teddies	
matching	1	2

Maths Progressions - Number and algebra

Stage 1
After 20 weeks at school
One-to-one counting
During these school years, number should be the focus of $60-80 \%$ of mathematics teaching time.

Mathematical Behaviours (what mathematicians do)	
Explain my mathematical thinking to...	Explain others' strategies by repeating or re-voicing what they have said
Use the most efficient strategy to solve a problem e.g. I know that counting on from the largest number is more efficient than counting from 1.	Agree or disagree with someone else's strategy or answer, and explain why I think this
Listen actively	Say what I am good at in maths and what I need to work on
Identify maths in the world around me	Use mathematical vocabulary
Pose problems and conduct mathematical investigations	
I am learning to...	Knowledge

Number identification, Sequencing and ordering	
Read numbers to 10	$7,6,8,5$
Count forwards to 10	$0,1,2,3,4,5 \ldots 10$
Count backwards from 10	$10,9,8,7,6,5 \ldots$
Say the number after a number (in the range 1-10)	4,5,
Say the number before a number (in the range 1-10)	Cla,
Order numbers to 10	531827

Instantly recognise patterns to 5

Maths Progressions - Number and algebra

Stage 2/3 Counting from one After 1 year at school
Early level 1
During these school years, number should be the focus of $60-80 \%$ of mathematics teaching time.

Mathematical Behaviours (what mathematicians do)	
Explain my mathematical thinking	Explain others' strategies by repeating or re-voicing what they have said
Use the most efficient strategy to solve a problem e.g. I know that counting on from the largest number is more efficient than counting from 1	Agree or disagree with someone else's strategy or answer, and explain why I think this
Listen actively	Say what I am good at in maths and what I need to work on
Identify maths in the world around me	Use mathematical vocabulary
Pose problems and conduct mathematical investigations	
I am learning to... Knowledge	
Number identification	
Read any number to 20	17, 16, 18, 15
Say the 'ty' numbers	Twenty, forty
Sequencing and ordering	
Count forwards from any number up to 20	14, 15, 16...
Count backwards from any number up to 20	15, 14, 13...
Say the number after a number (in the range 1-20)	14,15,
Say the number before a number (in the range 1-20)	\qquad 14, 15

Maths Progressions - Number and algebra

Order numbers to 20	53118207
Skip count in 2 s , 5 s and 10 s	$2,4,6,8 \ldots 20 \quad 5,10,15,20 \ldots$ 10, 20, $30 \ldots$
Grouping, place value and basic facts	
Know groupings within 5 Know groupings within 10	5 and 2 7 and 3
Know doubles to 10	$5+5=10$
Know the place value for 'teen' and 'ty' numbers up to 20	$13=10+3$ (bundle 1 ten and 3 ones)
Instantly recognise patterns to 10 (doubles and 5 based)	
Fractions	
Read symbols for halves and quarters	$1 / 4 \quad 1 / 2$
I am learning to... Strategy	
Addition Solve simple addition problems by counting all the objects with materials or in my head	
Subtraction Solve simple subtraction problems by counting all objects with materials or in my head	
Multiplication Solve simple multiplication problems by counting all the objects	There are 4 lolly jars, each lolly jar has 2 lollies in it. How many Iollies are there altogether? Counting all (one by one) is ok. If a child skip counts they exceed the expectations

Maths Progressions－Number and algebra

Fractions Find $1 / 2$ and $1 / 4$ of shapes or sets to 20 by equal sharing of the objects	
Equations and Expressions I am learning to．．．	
Communicate and explain my strategy for counting and grouping using words，numbers and pictures	\％\％ © $3+5=8$ I counted all the balls to get 8 ．
Pattern and I am learning to．．．	elationships
Continue sequential patterns	
Identify what the unit of repeat is in a pattern	Identify unit of repeat e．g．green square，blue circle

Maths Progressions - Number and algebra

Stage 4 Advanced counting

After 2 years at school
At level 1
During these school years, number should be the focus of $60-80 \%$ of mathematics teaching time.

I am learning to... Mathematical Behaviours (what mathematicians do)	
Explain my mathematical thinking	Explain others' strategies by repeating or re-voicing what they have said
Use the most efficient strategy to solve a problem e.g. I know that counting on from the largest number is more efficient than counting from 1	Agree or disagree with someone else's strategy or answer, and explain why I think this
Listen actively	Say what I am good at in maths and what I need to work on
Identify maths in the world around me	Use mathematical vocabulary
Pose problems and conduct mathematical investigations	
I am learning to... Knowledge	
Number identification, sequencing and ordering	
Read any number to 100	17, 16, 58, 65, 99
Count forwards from any number up to 100	34, 35, 36...
Count backwards from any number up to 100	35, 34, 33...
Say the number after a number in the range 1-100	$\boldsymbol{\bigcap}_{54,55,}$
Say the number before a number in the range 1-100	- \qquad 54, 55
Order numbers to 100	253312182077
Count forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s to 100	$\begin{aligned} & 2,4,6,8, \ldots, \ldots, 100 \\ & 5,10,15, \ldots, \ldots, 100 \end{aligned}$

Maths Progressions - Number and algebra

	10, 20, 30, ..., .., 100	
Know number of 10s in decades	There are 6 tens in 60	
Grouping and basic facts		
Know groupings within 20	$17+3 \quad 4+16$	
Know teen number facts	$\begin{aligned} & 10+6=16 \\ & 10+?=18 \end{aligned}$	
Know multiples of 10 that add to 100	$30+70=100$	
Know doubles and halves to 20	$3+3 \quad 6-3 \quad 1 / 2$ of 6	double 3
Know addition facts to 10	$4+3=7$	
Fractions		
Read unit fractions	$1 / 2 \begin{array}{lllll}1 / 4 & 1 / 3 & 1 / 5 & 1 / 10\end{array}$	
I am learning to...		
Addition Solve addition problems by counting on from the largest number in my head		
Subtraction Solve subtraction problems by counting back from the largest number in my head		
Solve addition and subtraction problems by counting on or back in ones and tens	$\overbrace{(8)}^{36+40=}$	

Maths Progressions - Number and algebra

Multiplication Solve multiplication problems by skip counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s	
Multiplication/division/fractions Solve multiplication and division problems by using knowledge of doubles and halves	12 sausages shared between 2 dogs. Double 6 is 12 .
Fractions Find $1 / 2$ and $1 / 4$ of sets of shapes, sets and numbers by equal sharing	Students must be able to understand the concept of equal sharing with shapes, sets and numbers - not just shapes
I am learning to... Equations and Expressions	
Communicate and explain my strategy for counting, grouping and equal sharing using words, numbers and pictures	I began counting from the smallest number 3 and counted on 4 to get 7 .
Pattern and Relationships I am learning to...	
Create and continue sequential patterns	$\square \square \square \square \bigcirc \square \bigcirc$ $\triangle \square \triangle \square \triangle \square$ $\square \square \square \square \square$

Maths Progressions - Number and algebra

Identify what the unit of repeat is in a pattern

Identify unit of repeat e.g. yellow square, blue square, red square, white square...

1	2	3	4	5	6	7	8	9	10	11	12	13

What would the 13th shape be in this pattern? The expectation is that the student continues the pattern one cube at a time until they identify a yellow cube at 13 .

Maths Progressions - Number and algebra

Stage 5 Early additive part-whole In year 3 and 4 Year 3-E level 2 / Year 4-At level 2
During these school years, number should be the focus of $60-80 \%$ of mathematics teaching time.

I am learning to... Mathematical Behaviours (what mathematicians do)	
Explain my mathematical thinking orally, visually or in writing	Engage in mathematical discussions with others
Explain others' strategies by repeating or re-voicing what they have said	Use the most efficient strategy to solve a problem e.g. I know that for this problem using a place value strategy is more efficient than counting on.
Agree or disagree with someone else's strategy or answer, and explain why I think this	Listen actively
I know what I am good at in maths, what my gaps are and my next steps	Use mathematical vocabulary
Pose problems and conduct mathematical investigations	Make connections with what I am learning in maths to other curriculum areas and the world around me
I am learning to...	
Number identification, sequencing and ordering	
Read any number to 1000	170, 316, 508, 685, 990
Count forwards and backwards by 1s, 10s, 100s	1000...350, 345, 340
Order numbers to 1000	126, 433, 754
Say the number 1 more, 10 more, 100 more	©
Say the number 1 less, 10 less, 100 less	$\text { 154, } 165$
Skip count forwards and backwards in 3s (as well as $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s)	3, 6, 9, 12..., 30
Grouping and place value	

Maths Progressions - Number and algebra

Know groupings of 1s, 10s and 100s to at least 1000	$327=32$ tens $924=9$ hundreds or 92 tens
Know groupings to 100	43 and 57 I know that 3 and 7 make 10 and that 40 and 50 make 90 so that's 100 .
Round 3 digit numbers to the nearest 10 or 100	$246 \rightarrow 250$
Basic facts	
Know addition subtraction facts to 20 (instant recall)	$12+8=20 \quad 20-5=15$
Know multiples of 100 that add to 1000 (instant recall)	400 and 600
Know multiplication \& division facts for $\mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10$ (instant recall)	$\begin{aligned} & 5 \times 2=10 \\ & 60 \div 10=6 \end{aligned}$
Fractions	
Know unit fraction symbols	$\begin{array}{lllllll}1 / 2 & 1 / 4 & 1 / 3 & 1 / 5 & 1 / 10\end{array}$
Order fractions with the same denominators	$1 / 4,3 / 4$
I am learning to... Strategy	
Addition and subtraction Solve simple problems mentally using basic facts I know - Doubles: $8+7=8+8-1$ - Fives: $8+7=5+3+5+2$ - Making tens: $8+7=8+2+5$	
Addition and subtraction Solve 2 and 3 digit problems by: - Tidy numbers $29+18$ as $30+17$ - Place value $33+16$ as $30+10+3+6$	

Maths Progressions - Number and algebra

Multiplication and division Solve problems by: - Using repeated addition with problems involving 2 s , $3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s at least - Using doubling additively	I have 6 baskets of apples, each basket has 15 apples in it. How many apples have I got altogether? $15+15=30 \quad 30+30=60 \quad 60+30=90$ I have 24 Iollies. I have to share these between 4 people. How many does each person get? $1 / 2$ of 24 is 12 and $1 / 2$ of 12 is 6 Or by using trial and improvement with addition
Fractions Find a fraction of a number by trial and improvement with addition facts	Which is bigger? $1 / 2$ of 60 or $1 / 4$ of 80
Fractions Find fractions of shapes and lengths including fractions greater than 1	Ben and his friends ate 16 pieces of cake. Each piece was $1 / 4$ of the cake. How many cakes did they eat? Examples of strategies for this stage include: Addition strategy: 4 pieces is one cake so $4+4+4+4=16$ Rate strategies: 4 quarters is one cake so 8 quarters is 2 cakes, so 12 quarters is 3 cakes, so 16 quarters is 4 cakes. Multiplication facts: $4 \times 4=16$
I am learning to... Equations and Expressions	
Communicate and interpret additive strategies using words, numbers, pictures and symbols.	

I am learning to...

Find rules for the next members in a sequential pattern	 How many matchsticks would 10 squares use? 20 squares?
Identify what the unit of repeat is in a pattern	Identify unit of repeat e.g. what shape goes on the number 14 in this pattern? What colour will it be?
	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 1 & (2) & 3 & 4 & 5 & 6 & \hat{7} & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ \hline \end{array}$
	The student identifies the two variables (shape and colour) in the pattern. They might look at the variables separately and identify the unit of repeat for each ("yellow, blue, red" and "triangle, circle"). They may look at the variables together and identify the complete unit of repeat ("yellow triangle, blue circle, red triangle, yellow circle, blue triangle, red circle").

Maths Progressions - Number and algebra

Stage 6 Advanced additive
In year 5 and 6 Year 5-E level 3/Year 6-At level 3
During these school years, number should be the focus of $50-70 \%$ of mathematics teaching time.

I am learning to... Mathematical Behaviours (what mathematicians do)	
Explain my mathematical thinking orally, visually, in writing or using digital tools	Select and apply the appropriate representations to solve problems e.g. graphs, diagrams, tables, numbers etc.
Apply the most efficient strategy to solve a problem e.g. I know that for this problem a part-whole place value strategy is more efficient than compensating from tidy numbers.	Engage in mathematical discussions with others
Take or defend a position or point of view about a strategy/answer and justify with evidence e.g recognising relationships, or using counter examples	Explain others' strategies by repeating or re-voicing what they have said
Listen actively	I know where I am going, how I am going and where to next in maths
Use mathematical vocabulary	Make connections with what I am learning in maths to other curriculum areas and daily life
Pose problems and conduct mathematical investigations	Make generalisations
Sequencing and ordering fractions	
Read and order any number up to 1,000,000	
Read decimals to 3 decimal places	0.764 "Zero point seven, six, five" OR "seven hundred and sixty four thousandths" If a child reads this as "zero point seven hundred and sixty four" this is incorrect
Read any fraction including numbers greater than 1	$8 / 6 \quad 4 / 5 \quad 11 / 3$,
Order unit fractions	$1 / 8,1 / 4,1 / 2$
Say the number 1, 10, 100 and 1000 more or less	$\begin{aligned} & 654,754,854 . . \\ & 8432,7432, \ldots \end{aligned}$

Maths Progressions - Number and algebra

Count forwards and backwards in $1 / 2 \mathrm{~s}, 1 / 4 \mathrm{~s}, 1 / 3 \mathrm{~s}, 1 / 5 \mathrm{~s}, 1 / 10 \mathrm{~s}$	$8 / 10,9 / 10,1,11 / 10$
Understand that percentages are out of 100	At this stage students are not required to convert fractions and decimals. They do not need to rename common fractions as percentages as this comes in at stage 7. However, they should have some understanding that percentages are 'out of 100 ' and that fractions are percentages - parts of a whole.
Make connections between fractions and percentages	
Grouping and place value	
Know how many tenths, 10s, 100s and 1000s are in whole numbers	$\begin{aligned} & 4676=467 \text { tens and } 46 \text { hundreds } \\ & 5=50 \text { tenths } \\ & 25=250 \text { tenths } \end{aligned}$
Know groupings within 1000	$\begin{aligned} & 455 \text { and } 555 \\ & 200 \text { and } 800 \end{aligned}$
Know groups of $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s in numbers to 100 and any remainders instantly (using basic facts knowledge)	How many threes in 17 ? 5 and 2 remainders
Round whole numbers to the nearest $10,100,1000$	$5508 \rightarrow 6000$
Round decimals to the nearest whole number	$3.49 \rightarrow 3$
Basic facts	
Recall all multiplication and division facts to 10×10	$\begin{array}{ll} 3 \times 8=24 & 24 \div 5=4 \\ 7 \times 7=49 & 63 \div 7=9 \end{array}$
Recall addition \& subtraction facts to 20	$13+5=18 \quad 16=9+7$
Know what happens when you multiply by 1, 0 or 10	$\begin{aligned} & 14 \times 10=140 \\ & 14 \times 0=0 \end{aligned}$
Strategy	
I am learning to use a broad range of mental strategies to solve addition and subtraction strategies (see strategies below) I am learning to choose the most suitable strategy for the problem	

Maths Progressions - Number and algebra

Compensating from tidy numbers	$394+79$ $(394+80)-1$
Place value partitioning	$394+79$ $390+70+9+4$
Using compatible numbers	$45+37+65$ $(45+65)+37$
Using reversibility	$403=97+?$ $97+?=403$
Using equal additions (add to both numbers)	$403-97$ $406-100$
Finding fractions of whole numbers	4394
Using standard written form for addition and subtraction	

Finding fractions of sets and quantities	On your birthday cake 8 of the lollies are yellow. The other two-thirds of the lollies are red. How many red lollies are on the cake? Possible strategies at this stage: $3 \times 8=24$ so 24 lollies in total then adds to get answer $8+8=16$ Or $3 \times 8=24$ so 24 lollies in total - then multiplies to get answer: $2 \times 8=16$ Or $1-2 / 3=1 / 3 \quad 1 / 3=8 \quad 2 / 3=8+8(\text { or } 8 \times 2)=16$
Solving simple equivalent ratio and rate problems	2:3 so ?:6 I add 2 cups of sugar for every 3 cups of flour. How many cups of sugar should I add if I have 6 cups of flour?
Solving simple equivalent fraction problems	Double 3 which is $6 . A$ is in one column so that makes $\frac{1}{6}$. What fractions of the whole birthday cake are pieces A and B ? Explain your answer.
Comparing fraction sizes with whole numbers	$37 / 7=52 / 7$
I am learning to... Equations and Expressions	
Record and interpret additive and simple multiplicative strategies using words, diagrams, and symbols with an understanding of equality	$\begin{gathered} 78+22=100 \quad 100+131=231 \text { so } 231-78=22 \\ 22+131=153 \end{gathered}$

Pattern and Relationships I am learning to...	
Create and continue sequential patterns with two or more variables	
Predict sequential patterns with two or more variables	This is how the tapatoru pattern grows. How many crosses will be in the 20th tapatoru pattern? Show how you worked out your answer. The student uses repeated addition or a multiplication rule in conjunction with a recording strategy.

Maths Progressions - Number and algebra

```
Stage 7 Advanced multiplicative - Early proportional In year 7 and 8 Year 7-Early
level 4/Year 8-At level 4
    During these school years, number should be the focus of 40-60% of mathematics teaching time.
```


Sequencing and ordering

 etc
including negative numbers.

Say the number $1 / 1000,1 / 100,1 / 10,1,10$, before or after any number
-

Order decimals to three places
1.2, 1.3, 1.4
6.43, 6.43, 6.41

Counting backwards: $-24,-25,-26$
1.2,1.3/R,__
$\sqrt{ } \sqrt{6.42,6.43}$
$6.25,6.3,6.456$

Maths Progressions - Number and algebra

Know groupings of hundredths, tenths, 10s, 100s and 1000s in 7 digit numbers	$3456789=345678$ tens $4562=620$ tenths
Round whole numbers \& decimals to nearest 1 or $1 / 10$	$0.47 \longrightarrow 0.5$
Know groupings of numbers to 10 that are in numbers to 100 and find the resulting remainders.	How many 6s in 38 ? 6 remainder 2
Basic facts	
Recall all multiplication and division facts to 12×12	$\begin{aligned} & 8 \times 7=56 \\ & 72 \div 9=8 \end{aligned}$
Recall conversions between decimals, fractions and percentages with $1 / 2,1 / 4,1 / 3,1 / 5,1 / 10$	
Use divisibility rules for 2, 3, 5, 9, 10	245 is divisible by 5 because the ones column is a 5 306 is divisible by 3 and 9 because the sum of the digits $(3+0+6=9)$ and 9 is divisible to both 9 and 3
Know square numbers and square roots to 100 and corresponding roots	$\begin{aligned} & 7^{2}=49 \text { so } \\ & \sqrt{ } 49=7 \end{aligned}$
Identify factors of numbers to 100 including prime numbers	Factors of $35=1,5,7,35$
Find common multiples of numbers to 10	Common multiples of 3 and 7 are... 21, 42,63....
Fractions	
Order mixed fractions with $1 / 2,1 / 4,1 / 3,1 / 5,1 / 10$	2/10, $3 / 41 / 2,5 / 3$
Know equivalent fractions for $1 / 2,1 / 4,1 / 3,1 / 5,1 / 10$ with denominators 10,100,1000	1/4 $=^{25 / 100}$,
Round whole numbers \& decimals to nearest 1 or $1 / 10$	0.47 rounded to the nearest tenths is 0.5 4.67 rounded to the nearest whole number is 5
Recall fraction, decimal to percentage conversions for halves, thirds, quarters, fifths and tenths	$3 / 4=0.75=75 \%$

Maths Progressions - Number and algebra

	At this stage when learning about percentages students must also understand that like any fraction, there can be percentages greater than 1 e.g. 125%
Strategy	
Addition and subtraction I am learning to solve problems using a broad range of strategies for whole numbers and decimals... I am learning to choose the most suitable strategy for the problem	
by compensating from tidy numbers	$3.2+1.95 \quad(3.2+2)-0.05$
by partitioning using place value	$8.65+4.28+4+0.6+0.2+0.05$
by using reversibility	$6.03-5.8$. $5.8+?=6.03$
by using equal additions	$7.2-3.7 \quad 7.5-4=3.5$
by using standard written form (vertical algorithm)	$\begin{aligned} & 7.2 \\ & \frac{-3.7}{\text { Student must be able to explain the place value partitioning }} \\ & \text { involved } \end{aligned}$
with negatives (integers)	$7-3=7+3=10$
balance positive and negative amounts	See this site for examples and models
with simple equivalent fractions	$3 / 4+3 / 8=6 / 8+3 / 8=9 / 8$
Multiplication and Division I am learning to solve problems using a broad range of strategies by (see below)... I am learning to choose the most suitable strategy for the problem	
compensating from tidy numbers	$\begin{aligned} & 19 \times 6=(20 \times 6)-6 \\ & 56 \div 4 \longrightarrow(60 \div 4)-1 \end{aligned}$
using place value	$\begin{aligned} & 28 \times 7 \longrightarrow(20 \times 7)+(8 \times 7) \\ & 72 \div 4 \longrightarrow(40 \div 4)+(32 \div 4) \end{aligned}$

Maths Progressions - Number and algebra

using reversibility	$63 \div 9=9 \times ?=63$
using proportional adjustment	$75 \times 4 \longrightarrow 25 \times 12$ $81 \div 3 \longrightarrow \quad(81 \div 9) \times 3$

Maths Progressions - Number and algebra

I am learning to...

| Record the results of calculations using equations and |
| :--- | :--- |
| diagrams |$\quad 6 \times 28=168$

Pattern and Relationships

I am learning to...

Find and represent relationships in spatial and number patterns using

- tables and graphs
- general rules (for linear relationships)

Funky Furniture sells tables that can be joined together for large meetings. Tables and chairs are set up this way.

If a line of 24 tables is set out like this, how many chairs will be needed? Can you give a rule for the number of chairs needed for any given number of tables?

Students would use a table or graph to solve similar problems to above and identify a general rule.

Find and represent relationships in spatial and number patterns using recursive rule for non-linear relationships (by the end of year 8)

Apply inverse operations to simple linear relationships (by the end of year 8)

For examples see pages 16 and 22 of FiO book: Algebra Level 4+ year 7-8 (book 4)

For a tutorial click here

Maths Progressions - Number and algebra

Stage 8 Advanced proportional - part whole
 In year 9
 Level 5

A student in year 8 should have mastered the learning intentions at this stage to be considered 'above'. A student in year 7 should be comfortably working on these learning intentions at this stage to be considered 'above'.

I am learning to...	
Explain my mathematical Behaviours (what mathematicians do) using digital tools	Select and apply the appropriate representations to solve problems
Compare a variety of problem solving strategies	Apply the most efficient strategy to solve a problem e.g. I know that for this problem a part-whole place value strategy is more efficient than compensating from tidy numbers.
Take or defend a position or point of view about a strategy/answer and justify with evidence e.g recognising relationships, or using counter examples	I know where I am going, how I am going and where to next in maths
Listen actively	Make connections with what I am learning in maths to other curriculum areas, daily life, current events, art, culture or sport
Use mathematical vocabulary	Pose problems and conduct mathematical investigations
Explain others' strategies by repeating or re-voicing what they have said	
Make generalisations	Knowledge
I am learning to...	

Sequencing and ordering

etc.	$\begin{aligned} & 1.2,1.3,1.4 \\ & 6.43,6.43,6.41 \end{aligned}$
Say the number $0.001,0.01,0.1,1,10$ before and after decimal numbers	6.42, 6.52,
Order fractions, decimals and percentages	0.4, $50 \%, 4 / 5$
Grouping and place value	

Maths Progressions - Number and algebra

Know how many $1 / 10$'s,, $1 / 100^{\prime} \mathrm{s}$, and $1 / 1000$ s, that are in numbers to 3 decimal places.	$1.873 \text { is }$ 18 tenths, or 187 hundredths etc.
Know what happens when any number is multiplied or divided by a power of ten.	$\begin{aligned} & 1.23 \times 100=123 \\ & 6.53 \div 10=0.653 \end{aligned}$
Round decimals to the nearest $100,10,1,0.1$ or 0.01	$9.876 \quad 9.88$
Recall fraction, decimal and percentage conversions for commonly used fractions: $\left(1 / 8 s^{1}, 1 / 10^{\circ} \mathrm{s}^{1} / 20^{\prime} \mathrm{s} \text { etc }\right)$	$1 / 8=0.125=12.5 \%$
Basic facts	
Know simple powers of numbers to 10	${ }^{2}$
Use divisibility rules for $2,3,4,5,6,8,9,10$	276 is divisible by 3 because $2+7+6=15$ and 15 is divisible by 3
Identify common factors of pairs of numbers to 100	Highest common factor of 72 \& $81=9$
Identify lowest common multiple of pairs of numbers to 10	The LCM of 6 \& 8 = 24
Recall prime numbers to 20	e.g. $1,2,3,5,7$...

Strategy	
I am learning to solve +-x and \div problems with fractions and decimals by using:	
Conversion between fractions and decimals	$0.75 \times 2.4 \longrightarrow$ $3 / 4 \times 2.4$
Place value	$0.15 \times 3.6 \longrightarrow$
Doubling and halving	$7.2 \times 3.6)+(0.05 \times 3.6)$

Maths Progressions - Number and algebra

Commutativity	$\begin{aligned} & 48 \times 0.125 \longrightarrow \\ & 0.125 \times 8=1 / 8 \text { of } 8 \end{aligned}$
Multiplying numerators and denominators	$3 / 4 \times 2 / 5 \longrightarrow \frac{3 \times 2}{4 \times 5}$
Converting to common denominators	$\begin{array}{r} 3 / 5+2 / 7=21 / 35+10 / 35 \\ 31 / 35 \end{array}$
Use written forms for: Addition and subtraction of whole numbers and decimals to 3 decimal places	$\begin{array}{r} 3.567 \\ +0.063 \\ \hline \end{array}$
Multiplication and division of whole numbers, decimals and fractions multiplied by a single digit number	$\begin{array}{r} 6.45 \\ \times 3--\quad 5 \Gamma 4.83 \quad 6 \times 11 / 2 \end{array}$
Multiplication of 4 digit x 2 digit whole numbers	$\begin{array}{r} 6735 \\ \times \quad 85 \\ \hline \end{array}$
Find fractions, decimals and percentages of given amounts	$\begin{aligned} & \frac{\text { Example } 1}{65 \% \text { of } 24} \\ & 50 \% \text { of } 24=12, \quad 10 \% \text { of } 24=2.4 \\ & 5 \% \text { of } 24=1.2 \\ & \text { so } 65 \%=12+2.4+1.2 \\ & \text { Example 2 } \\ & 28 \text { out of } 42=? \% \\ & 28 / 42=4 / 6=2 / 3=66.6 \% \end{aligned}$
Ratios, rates and proportions Finding equivalent ratios with a common factor or multiplier	$\begin{aligned} & 21: 28 \text { as } ?: 8 \longrightarrow \\ & 21: 28=3: 4 \text { so } 6: 8 \\ & 3: 5=?: ? \text { out of } 96 \longrightarrow \end{aligned}$ As $3: 5$ is $3 / 8,3 / 8$ of $96=36$, so the proportion is $36: 60$
Equations I can...	Expressions
Form and solve linear and simple quadratic equations	this makes it Quadratic $5 x^{2}-3 x+3=0$

Maths Progressions - Number and algebra

Pattern and Relationships

I am learning to...

Generalise the properties of operations with fractional numbers and integers	$\begin{aligned} & -2+4=4+(-2) \\ & -2(4)=4(-2) \end{aligned}$
Please note: At Stage 8 (GloSS) will only provide a snapshot of the students ability at Level 5 - need to ensure that they are comfortably solving problems at this level in N\&A / eg order of ops is known and therefore now applied more generally within integers/fractions to understand linear equations - see that $-2+4$ is the $4+(-2)$ and be able to explain why. The learning is the generalisation, not the operating as such.	Click here for lesson examples.
Relate tables, graphs and equations to linear and simple quadratic relationships found in number and spatial patterns.	See stage 7 example, however, at this stage students should be able represent linear and simple quadratic patterns in: - graphs - tables - equations An example of a Quadratic Equation: $5 x^{2}-3 x+3=0$ Quadratic Equations make nice curves, like this one:

